
S T U D Y  OF T U R B U L E N T  B O U N D A R Y  L A Y E R S  ON 

S M O O T H  AN D R O U G H  S U R F A C E S  W I T H  

A R B I T R A R Y  1 3 R E S S U R E  G R A D I E N T S  

A .  G.  M a r e h e n k o  

The resul ts  of an experimental  investigation into the s teady-s ta te  plane turbulent boundary 
layer  in an incompress ible  liquid at an impermeable  wall are presented.  Cases  of flow at 
smooth and rough surfaces  in the presence  of a longitudinal p re s su re  gradient are con- 
s idered.  The resul ts  of measurements  of the  turbulent s t ructure  of the flow at various d i s -  
tances f rom the channel inlet are presented.  A detailed analysis of the kinematic and 
dynamic charac te r i s t i c s  of the flow is given. Special attention is paid to the boundary r e -  
gion of the flow close to the wall. A universal  law is proposed for  the variat ion in the local 
res is tance  coefficient along the boundary layer .  

Notation: U, V, longitudinal and t r ansve r se  components of the average velocity; u, v, components of 
the velocity pulsations; 13, average p res su re ;  ~-, tangential s t r e s s ;  u . ,  dynamic velocity;  C f ,  local coeffi-  
cient of surface friction; p, density; v,  kinematic molecular  viscosi ty;  ~, effective viscosi ty ;  6, thickness 
of the sublayer close to the wall; s, thickness represent ing the range of action of the wall law; h, thickness 
of the boundary layer ;  x,y, space coordinates;  T, t ime of averaging the velocity in photographic recording.  

The indices denote: 0, at the wall; 6 ,  at the outer edge of the wall sublayer;  s, at the boundary of the 
range of action of the wall law; ~ ,  at the outer edge of the boundary layer .  

1. Experimental  Arrangement .  The experiments  were ca r r i ed  out in a hydrodynamic tes t -bed of 
periodic action with a ver t ica l ly  placed working section (Fig. 1). This was connected to a p re s su re  tank in 
order  to ensure smooth entry.  In o rder  to eliminate vibration when the jet entered the receiving tank, 
dampers  were provided. At the exit f rom the working channel a regulating device was installed to maintain 
a steady flow of water .  Using a sys tem of pulleys, the axle of the regulator  shutter  was connected to a float 
in the p ressu re  tank, and the specified mode of flow was thus automatically controlled.  The water  was r e -  
turned from the rece iver  to the p res su re  tank by means of a pump. Filling continued up to a specified 
working mark .  On r is ing to the specified position, the float closed a re lay contact, interrupted the e l ec t r i -  
cal supply circuit ,  and automatically disconnected the pump. After the water  had sett led in the p ressu re  
tank for  5 rain, the sys tem was s tar ted and the working cycle executed. 

The working part  had a rectangular  section of a • b = 10 x 30 cm 2 and glass  walls.  Inside this par t  
of the sys tem were two interchangeable,  symmet r ica l ly  placed, movable plates (b x l = 30 x 70 cm 2) en-  
abling the c ross  section of the tes t  part  to be varied.  

Smooth plates were made of 7-ram glass .  In order  to eliminate the laminar  par t  of the boundary 
layer ,  a rough surface d = 1.5 mm in height was placed on the f i rs t  3 cm of the plates s tar t ing from the 
leading edge. The rough plates were p repared  by sticking gravel  grains on the glass  surface with epoxy 
res in  (layer t ~ 0.5 mm).  Fract ions of gravel  with a part icle  d iameter  of 1 and 2 mm were taken in equal 
proport ions and careful ly  mixed. After application of the rough surface,  a thin l ayer  of nitro lacquer  was 
deposited by means of a pulver izer .  
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Fig. 1. Arrangement  of exper i -  
mental  apparatus (version with 
expanding channel). 

The s t ructure  was measured  by microphotography of the flow, 
the la t ter  being illuminated in individual flashes through a nar row slot; 
the experimental  data were analyzed stat is t ical ly.  A detailed descr ip -  
tion of the method of investigation and of the electronic flash equip- 
ment was given in [1, 2]. 

Let  us briefly mention the method of determining cer ta in  c h a r -  
ac ter i s t ics  of the flow which will be used subsequently in analyzing 
the experimental data. 

The thickness of the boundary l ayer  h was determined in the 
present  investigation by reference  to the points at which the d is t r ibu-  
tions of the average and pulsating velocities passed into the form of a 
s traight  line, corresponding to the values of these cha rac te r i s t i c s  in 
the potential core  of the flow, and also by reference  to the point on the 
distribution of corre la t ion  moments  at  which (uv ~ vanished. 

The thickness of the inner region of the boundary layer  s was 
determined by reference  to the point on the distribution of U = f (y) at 
which a deviation from the logari thmic profile calculated by means of 
Eq. (2.1) (see below) began to appear.  

F rom the change in the velocity of the external flow we found 
the p res su re  gradients by using the relation [3] 

dU~ i dPo~ 
g ~ = - - ' p  dz (i.i) 

The velocity gradients dU/dy  were determined graphical ly and 
analytically.  The resul ts  of the two methods agreed c losely  with one 
another.  

2. Results of the Experiment .  We studied three charac te r i s t i c  
cases  of a turbulent boundary l ayer  developing on smooth and rough 

surfaces  in a channel with parallel ,  contracting,  or expanding walls.  We made seven ser ies  of experiments 
and measured  the s t ructure  of the flow in c ross  sections lying at different distances f rom the inlet. The 
seventh se r ies  constituted a repetit ion of the sixth on a l a rge r  scale in the region of flow close to the wall. 
The fact that the o r ig ina l  and repeated resul ts  agreed with one another proved the reproducibil i ty and r e -  
liability of the experimental  resu l t s .  

In addition to this we measured  the s t ructure  of the flow direct ly  in front of the leading edge of the 
plates forming the working channel so as to be able to judge the charac te r i s t i c s  of the incident flow. We 
found that the distribution of averaged longitudinal velocities had a rec tangular  form.  We noted the ex is t -  
ence of a t r ansve r se  velocity which might give r i se  to a slight eddy at the leading edge of the plate, drawing 
the flow in at the entrance into the channel.  The corre la t ion  moments  (uv) = 0. The relative intensity of 
the turbulence of the incident flow 

- ~ - •  <~>~ ~ 5% U~ 

Our investigations covered the range of Reynolds numbers  Rx = 5 "103-5 �9 105. The original data are 
presented in Table 1. 

Here the rat ios  d l / d  2 = 1.0, 2.2, and 0.455 charac te r i ze  channels with paral lel  (d I = d 2 = 4.0 cm), con-  
t ract ing (d 1 = 6.6 cm, d 2 = 3.0 cm), and expanding (d 1 = 3.0, d 2 = 6.6 cm) walls; the as ter i sks  0n the numbers  
of some se r ies  indicate a rough surface;  the t ime of averaging the velocity in the photorecording T = 
0.00092 sec for ser ies  1, 2, 3, 4, 5, 6 and T = 0.000035 see for the seventh se r ies ;  the kinematic molecular  
v iscosi ty  v = 0.0100, 0.0115, 0.01035 for  se r ies  1, 2, 4, and ~ = 0.0117 for 3, 5, 6, 7. 

The resul ts  of the present  investigation were principally compared with the experimental  data re la t -  
ing to flow in a turbulent boundary ' layer at a smooth wall obtained by Kline, Reynolds, Schraub, and 
Runstabler  [4] for various p res su re  gradients .  
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T A B L E  1 .  

Series Expt. 
No. No. 

x,crrl h, c m  u~. , 
cm/sec  - 7  

l.O 

2.2 

0.455 

1 
2 
3 
4 
5 
6 
7 
8 
9 

t0 
i t  
t2 
13 
t4 
t5 
16 
t7 
i8 
19 
20 
2i 
22 
23 
24 
25 
26 
27 
28 
29 
3O 

7 0.50 
20 0 .75  
31 t.05 
44 1.25 
59 t.60 
5 0.60 

15 t.00 
26 t.30 
40 i.6O 
59 1.80 
6 0.35 

t5 0.55 
30 0.80 
55 0.95 
5 0.45 

22 0.95 
38 t.10 
59 i.25 
8 0.80 

18 t.40 
35 1.90 
58 2.10 
6 O.75 

t8 1.55 
35 2.15 
55 2.40 
6 0.75 

t8 1.55 
35 2.15 
55 2.40 

69.0 
74.0 
72.0 
74,0 
82.0 
70.6 
75.5 
79.0 
82.0 
84.0 
55.3 
56.5 
6t .0 
69.5 
57.3 
64.5 
70.3 
80.0 

t10.0 
105.5 
98.5 
90.5 

t l t  .0 
109.0 
t07.5 
i03.0 

--0.0i62 
--0.0173 
--0.0169 
--0.0t73 
--0.0193 
--0.0165 
--0.0i77 
--0.0t86 
--0.0193 
--0.0197 
--0.0t61 
--0.0i64 
--0.0t77 
--0.0202 
--0.0239 
--0.0269 
--0.0298 
--0.0334 
+O.O443 
+0.0425 
+0.0396 
+0.0364 
+0.0t92 
+0.0t89 
+0.0t86 
+0.0i79 
+0.0192 
+0.0189 
+0.0186 
+0.0t79 

Uc~x R X ~  

4.39.t04 
t.48.i05 
2.23.i05 
3.25. iO 5 
4.84.10 ~ 
5.05.10 a 
t.67.t04 
3.08.t0 a 
4.55.104 
6.70.t04 

2 .84 . t0  
7.25.t04 
1.56.10 ~ 
3.25- t05 
4.95. lO a 
3.02.i0 a 
4.86. l04 
8.31.t04 
7.51.t0 a 
t.65. t05 
2.95.105 
4.50. i05 
8.42.10 a 
2.95.104 
5.79. I0 a 
9.76.t04 
8.42.t0 a 
2.95.t0 a 
5.79.10 a 
9.76.t04 

A v e r a g e d  V e l o c i t i e s .  T h e  d i s t r i b u t i o n  of  t h e  a v e r a g e d  f l o w  v e l o c i t i e s  i s  s h o w n  i n  d i m e n s i o n l e s s  f o r m  

U/U 5 = f ( l o g y / 6 )  i n  F i g ,  2 .  I n  o r d e r  t o  d e s c r i b e  t h e  v e l o c i t y  p r o f i l e  i n  t h e  r a n g e  o f  a c t i o n  of  t h e  w a l l  l a w  

(6 <- y -< s )  a n d  i n  t h e  w a l l  s u b l a y e r  5 w e  u s e d  r e l a t i o n s h i p s  b a s e d  on  t h e  t w o - l a y e r  m o d e l  of  f l o w  [5].  T h e s e  

we  m a y  w r i t e  i n  t h e  f o l l o w i n g  m a n n e r :  

, < + ,  u ,= t.,5,g + + , 5 - o . 5  • 
u~sH,8 Y 

(2.1) 

(2.2) 

T h e  p r o d u c t  u .  8 R .  5 b y  w h i c h  t h e  a v e r a g e d  f l o w  v e l o c i t i e s  a r e  n o r m a l i z e d  i s  a r e a l  p h y s i c a l  q u a n t -  

i t y  - t h e  r a t e  of  f l o w  a t  t h e  b o u n d a r y  of  t h e  s u b l a y e r .  I t  f o l l o w s  f r o m  (2.1) a n d  (2.2),  i n  f a c t ,  t h a t  a t  y = 6 

U ~ -  u ~ R  ~ (2.3) 

T h u s ,  t h e  r e l a t i o n s h i p  u s e d  f o r  d e s c r i b i n g  t h e  v e l o c i t y  p r o f i l e  i n  t h e  r e g i o n  n e x t  t o  t h e  w a l l  c o n t a i n s  

t w o  u n k n o w n  q u a n t i t i e s  6 a n d  UT:  F o r  t h e  d e t e r m i n a t i o n  of  t h e s e  we  u s e d  E q .  (2.1) a n d  t h e  m e a s u r e d  U = 

f (y) p r o f i l e .  S u b s t i t u t i n g  t h e  v a l u e s  of  Yi a n d  U i a t  two  a r b i t r a r i l y  c h o s e n  p o i n t s  o n  t h e  v e l o c i t y  d i s t r i b u t i o n  
b e l o n g i n g  to  t h e  l o g a r i t h m i c  r e g i o n  (6 < y < s )  i n t o  (2.1) ,  we  s o l v e  t h e  s y s t e m  of  two  e q u a t i o n s  w i t h  t w o  u n -  

k n o w n s  a n d  f i n d  t h e  v a l u e s  of  6 a n d  U 6 . 

T h e  d y n a m i c  v e l o c i t y ,  o r  t h e  v e l o c i t y  of  f r i c t i o n ,  i s  b y  d e f i n i t i o n  e x p r e s s e d  t h u s :  

u . -  Y ~  
B y  a n a l o g y  w i t h  t h i s ,  

u ~ : V ' % / p  at y = 8  (2.4) 

T h e  v a l u e s  of  t h e  p a r a m e t e r  R . 5  c h a r a c t e r i z i n g  t h e  e n e r g y  p r o c e s s e s  t a k i n g  p l a c e  i n  t h e  f l o w  l a y e r s  

c l o s e  to  t h e  w a l l  [5] m a y  b e  f o u n d  a s  a f r a c t i o n  b y  d i v i d i n g  (2.3) b y  (2 .4) .  
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Fig. 2. Dimensionless velocity profile in a turbulent boundary layer .  
Author ' s  measurements  at a smooth and rough wall: 1-5) ser ies  1; 
6-10) se r i e s  2, P '  < 0; 11-14) ser ies  3; 15-18) ser ies  4, P '  < 0; 19- 
22) ser ies  5; 23-26) ser ies  6; 27-30) ser ies  7, 1 z' > 0; the enumera -  
tion of the points corresponds  to the enumerat ion of the experiments  
in Table 1. Measurements  of Kline et al. [4] on a smooth surface:  
31) 1 ) '  = 0; 32) 1 ~  < 0; 33) 1 ~ << 0; 34) P '  > 0; 35) 1 ~ >> 0. 

The effective v iscos i ty  is a simple combination 

The turbulent v iscosi ty  (Bussinescu) is given by the express ion 

(2.5) 

We may therefore  write 

<uv> _ ~ T 4 U / d y  

"rip --~ - -  (my> -I- v d U  / dy ~ e d U  [ dy 

It follows f rom this that 

"c [ p <uv) 
s = d U / d y  or  ~ v - - d U l d y  (2.6) 

At the boundary of the wall sublayer  6 we then find, after appropriate t ransformat ions  of (2.6), 

which also follows direct ly  f rom (2.2). 

We note that in the case of flow at a smooth surface ~ 6 = ~ �9 

The experimental  data indicate the existence of a local s imi lar i ty  of the flow close to the wall in the 
boundary layer  with nonzero p res su re  gradients and confirm the universal i ty  of the wall law. This im-  
portant  resul t  has been general ly  accepted and forms the basis  of a number  of p resen t -day  methods of ca l -  
culating the turbulent boundary layer .  

The distribution of averaged velocities on smooth and rough surfaces  is represented  by a single 
universal  relat ionship.  It is usually considered that in the logari thmic region the influence of roughness 
manifests  i tself solely as a displacement of the velocity profile in the semilogar i thmic axes. However, ow- 
ing to the var ie ty  of geometr ical  shapes charac te r iz ing  the elements of roughness,  a large number of p a r a m -  
e te rs  is required  in o rder  to descr ibe  the proper t ies  of the surface,  and this makes the problem far  more  
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Fig. 3. Intensity profiles of the longitudinal and t r ansver se  velocity 
pulsations ui* and vi* at various distances f rom the channel inlet;  
the broken profile re la tes  to the f i rs t  c ro s s  section.  The notation of 
the points is the same as in Fig. 2. 

complicated.  On using Eq. (2.1), the influence of the rough proper t ies  of the surface is completely taken in- 
to account by the thickness of the wall sublayer  6 and the effective v iscos i ty  e 6 at its outer boundary, and 
this leads to a universal  form of the velocity profile.  This simplifies the problem and offers analytical 
convenience, thus providing a good basis for developing new methods of theoret ical ly  calculating the turbu- 
lent boundary layer.  

The logari thmic velocity profile may,  to a fair  degree of accuracy,  be extended to the whole thickness 
of the boundary layer  for a cer ta in  c lass  of flows. This holds t rue for the major i ty  of flows in tubes and 
channels, for many cases  of a turbulent boundary layer  on a plate, and in the initial parts  of channels with 
zero and negative p res su re  gradients .  Many investigations by a wide var ie ty  of authors (and to some extent 
the data of Fig. 2) act as a basis for this.  

The outer region of the boundary layer  will not be considered in detail in this paper.  We shall s imply 
observe that experimental  data indicate the absence of s imi lar i ty  in the profiles of the velocity defect (de- 
ficiency) in the case of flow through contract ing and expanding channels, i.e.,  in these cases  a nonequilibri-  
um turbulent boundary layer  develops. 

3. Pulsations and Frict ion.  Velocity pulsations, For  negative p re s su re  gradients  (channels with 
parallel  and contract ing walls) the absolute values of the velocity pulsation components ~ and 
increase  monotonically in the direct ion of the flow, while for positive p res su re  gradients (expanding chan-  
nel) they diminish. In all cases  studied the distributions of the longitudinal pulsations have a sharply ex-  
p ressed  maximum close to the smooth wall, lying slightly above the boundary of the wall sublayer;  for flow 
on a rough surface the maximum of ~ f ~ -  moves into the core of the boundary layer .  The distributions of 
the t r ansve r se  velocity pulsations va ry  smoothly in all cases ;  their  maximum value occurs  within the thick-  
ness of the boundary layer .  The ordinate of the maximum is not constant.  

The intensity distribution of the velocity pulsations in c ross  sections of the boundary layer  lying at 
various distances f rom the channel entrance is i l lustrated in Fig. 3. Exactly the same qualitative picture 
appears here ;  at the smooth sur faces  the intensity of the longitudinal pulsations 

is g rea te r  and that of the t r ansve r se  pulsations 

(3.1) 

(3.2) 

is smal le r  than at the rough sur faces .  
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The intensity of the turbulence is great ly  increased by positive external p ressu re  gradients .  T h e  
mean square values of the velocity pulsations at the outer edge of the boundary l ayer  depend on the degree 
of turbulence of the potential core  of the flow. 

The measured  intensities of the velocity pulsations associated with flow on a smooth wall with nega-  
tive p re s su re  gradients  were compared with the experimental  resul ts  of Laufer  [6], Cent-Belle [7], and 
Clark [8]. Excellent basic agreement  was obtained between these data. We should mention one par t icu lar  
point, however.  Cent-Belle  indicates that the intensities of the pulsations increase  monotonically in the 
direct ion of flow. According to the resul ts  obtained here ,  these values fall in the f i rs t  three sections,  but 
in the fourth section the sign represent ing the evolution of this distribution changes.  An exactly analogous 
picture is obtained for flow at a smooth wall with a positive p ressu re  gradient.  At any rate,  this cer ta inly  
applies to the maximum values of the longitudinal velocity pulsations. A number  of factors  arising from 
peculiar i t ies  concerning the entry of the flow into the channel may be used to explain these differences.  

Turbulent fr ict ion.  Figure 4a, b i l lus t ra tes  the distribution of turbulent fr ict ion normalized with r e -  
spect to the square of the dynamic velocity.  For  flow on both smooth and rough surfaces  (other conditions 
being equal) the distribution 

= <uv> [u," = ! (Yl h) (3.3) 

may be approximated by a single relationship to an accuracy equivalent to the experimental error. 

Positive pressure gradients produce a very substantial increase in turbulent friction and displace its 
maximum into the core of the boundary layer. 

Figure 4a, b illustrates the distribution of turbulent friction (uv>, using a transverse displacement 
correlation coefficient 

= <u~> <v2> (3.4) 

The value is zero at the wall and tends toward z e r o  at the outer edge of the boundary layer ;  in the r e -  
gion between the immediate vicinity of the wall and y / h  ~ 0.7 the cor re la t ion  coefficient is almost  constant.  
The sca t te r  in the experimental  points does not exhibit any par t icu lar  tendency, and may thus be ascr ibed 
to experimental  e r r o r .  To a fair  degree of rel iabil i ty we may consider  that the distribution of the c o r r e l a -  
tion coefficient does not depend very  great ly  on the longitudinal coordinate x, the roughness of the waUs, or 
the p res su re  gradient .  

Compar ison with the measurements  of Klebanoff [9] (on a fiat plate), Laufer  [6] (in a smooth round 
tube), and Cent-Bel le  [7J (in a plane paral le l  channel with smooth wails) indicates that the manner  in which 
the corre la t ion  coefficient is distr ibuted over  the c r o s s  section of the flow is exactly the same for all cases  
of flow considered.  However, the maximum values of the cor re la t ion  coefficient differ for  different forms 
of flow, being equal to 0.5 for  a boundary layer  on a flat plate, 0.45 for flow in a round tube, and 0.39-0.41 
for flows in the initial sections of plane channels with smooth and rough wails for var ious p re s su re  gradients.  

. Tangential s t r e s s e s  at the wall. The measurements  of the turbulent s t ructure  ca r r i ed  out in the p r e s -  
ent investigation par t ly  included the region of the sublayer  close to the wall. Thus we may use our exper i -  
mental  data to determine the total tangential s t r e s s  at a very  short  distance from the wall y = 5 .  Then 

~ = p (<--uv> + vdU / @)s (3.5) 

The tangential s t r e s s  at the wall may  be determined if we allow fo r  the effect of the p ressu re  g rad i -  
ent by means of the additional t e rm y d P ~ / d x  [3]. Then, for y = 0, 

"~o = "r s - -  8 d P  / d x  (3.6) 

Coefficient of surface fr ict ion.  The local sur face- f r ic t ion  coefficient defined by the express ion 

C ! = 2 ~ o / p U  z (3.7) 

depends on the Reynolds number,  the surface roughness,  and the magnitude and sign of the p res su re  g rad i -  
ent. A number of relat ionships have been proposed for determining C f ,  each giving sa t i s fac tory  resul ts  
for a compara t ive ly  nar row range of conditions. Attempts at establishing universal  relat ionships for ca lcu-  
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Fig. 4. Distribution of the s t r e s s  due to turbulent fr ict ion ~- and the 
cor re la t ion  coefficients ~t in the boundary l ayer  at smooth and rough 
sur faces  for negative (a) and positive (To) p ressu re  gradients .  In the 
case of the points the notation of Fig. 2 has been retained; the broken 
lines with two dots r epresen t  stabilized flow according to the m e a s -  
urements  of Laufer [6], the ordinary  broken lines, Cont-Bello [7], the 
broken lines with one dot, Klebanov [9]. The universal  form of the 
relat ionship between the local  sur face- f r ic t ion  coefficient and the R x 
number  is given in (c). The author 's  experimental  data for the smooth 
and rough surfaces ,  respect ively,  are represented  thus: 1,2) P~ = 0 
(plane-parallel  channel); 3,4) pT < 0 (contracting channel); 5,6) P '  > 0 
(expanding channel). The numbers  of the points cor respond  to the 
numbers  of the se r i e s .  Kline et a l . ' s  data [4] for the smooth surface 
arc  given by: 7) P '  = 0 ; 8 )  P '  < 0;9)  P'<< 0;10) P '  > 0 ; l l )  P ' > > 0 .  

lating the distribution of tangential s t r e s s e s  and the coefficients of surface frict ion have not yet  been suc -  
cessful .  A detailed analysis of the present  state of the problem was presented in [3]. Experiment should 
play the major  par t  in solving this problem.  

By analyzing the data already obtained, we were able to find some dimensionless relat ionships for  the 
flow pa rame te r s ,  leading to a universal  empir ical  relationship of the form 

V ~  = R,, \ T C )  (o.521~ R=-o.32) (3.8) 

The resul ts  of calculations relating to the whole range of conditions studied are  presented in Fig. 4c 
in coordinates of 

i 
1. R~, ci* = V ~ R ,  ~ V ~  us 

The sca t t e r  in the experimental  points is no g rea te r  than 10%. 
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The exper imenta l  data regarding  the turbulent  boundary l aye r  at a smooth wall  obtained for  five p r e s -  
sure  gradients  of different  magni tudes and signs by Kline, Reynolds,  Schraub, and Runstadler  [4] agree  
quite sa t i s fac to r i ly  with (3.8) and thus enable us to extend the use of this equation to a wider  range of con-  
di t ions.  

The use  of Eq. (3.8) for  calculat ing the coefficient  of fr ict ion Cf  is in p rac t i ce  p e r m i s s i b l e  if we know 
the veloci ty distr ibution U = f (y) in the c r o s s  sect ions  of the boundary l aye r ,  at any ra te  for  flow on smooth  
su r faces ;  in the case  of rough su r faces  we mus t  also pos se s s  additional informat ion regard ing  the Reynolds 
s t r e s s e s  (uv} c lose  to the wall.  We may  then de te rmine  the init ial ly unknown values of R , 5  and Uco/U s by 
the method jus t  p roposed .  

F o r  c a s e s  of ze ro  p r e s s u r e  grad ien ts ,  when the logar i thmic  prof i le  of the veloci t ies  m a y  be extended 
to the whole th ickness  of the boundary layer ,  the p rob lem s impl i f ies  

f f -~ /g  = i  

and the value of R , 5  is found [10] f rom the equation 

R,,~ , ,i__~_ ) I h l S - - t  ,V~l (3.9) 

The quantity R ,  6~ has  a constant  value for  a pa r t i cu la r  type of roughness .  This  question was d i s -  
cussed  in detai l  in [10]. 
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